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Abstract

Under-display camera (UDC) systems are the foundation of
full-screen display devices in which the lens mounts under
the display. The pixel array of light-emitting diodes used for
display diffracts and attenuates incident light, causing vari-
ous degradations as the light intensity changes. Unlike gen-
eral video restoration which recovers video by treating dif-
ferent degradation factors equally, video restoration for UDC
systems is more challenging that concerns removing diverse
degradation over time while preserving temporal consistency.
In this paper, we introduce a novel video restoration net-
work, called D2RNet, specifically designed for UDC systems.
It employs a set of Decoupling Attention Modules (DAM)
that effectively separate the various video degradation fac-
tors. More specifically, a soft mask generation function is pro-
posed to formulate each frame into flare and haze based on
the diffraction arising from incident light of different intensi-
ties, followed by the proposed flare and haze removal com-
ponents that leverage long- and short-term feature learning to
handle the respective degradations. Such a design offers an
targeted and effective solution to eliminating various types of
degradation in UDC systems. We further extend our design
into multi-scale to overcome the scale-changing of degrada-
tion that often occur in long-range videos. To demonstrate
the superiority of D2RNet, we propose a large-scale UDC
video benchmark by gathering HDR videos and generating
realistically degraded videos using the point spread function
measured by a commercial UDC system. Extensive quanti-
tative and qualitative evaluations demonstrate the superiority
of D2RNet compared to other state-of-the-art video restora-
tion and UDC image restoration methods. Code is available
at https://github.com/ChengxuLiu/DDRNet.git.

Introduction
The rising popularity of full-screen mobile devices has
driven the development of under-display camera (UDC) sys-
tems. While research on UDC primarily focuses on single
image restoration (Feng et al. 2022; Zhou et al. 2020), few
works are available on video restoration, which impedes the
popularity of devices with UDC systems. UDC system is an
imaging system where the lens is mounted under the display.
It can eliminate the screen notch of the traditional front cam-
era in mobile devices, providing a bezel-less display without
disrupting the screen’s integrity (Qin et al. 2021).
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Figure 1: Method illustration. In UDC systems, the degree
of degradation is positively correlated with the intensity of
incident light. Our method decouples the degradation into
brighter flare and darker haze, which are handled using in-
formation from long and short distances, respectively.

In contrast to conventional cameras, during UDC imag-
ing, the incident light will cross the densely arranged organic
light-emitting diodes (OLEDs) used for display before ar-
riving at the lens. It implies that incident light is diffracted
when propagating the aperture between the OLEDs, espe-
cially when the wavelength of the light is similar to the
gaps between the obstacles (Zhou et al. 2021) (illustrated by
Fig. 2(a)). Besides, the degree of degradation arising from
diffraction is positively correlated with the intensity of in-
cident light (Kwon et al. 2021). As depicted in Fig. 1, in
brighter regions close to the light source, diffraction causes
flare that saturates one or more channels of the image, re-
sulting in content loss. In contrast, in other darker regions,
diffraction causes haze that makes the content fuzzy.

To solve these challenges, many efforts have been de-
voted to handle image restoration for UDC through deep
learning-based models. These works can be categorized into
two paradigms. Some attempts to leverage the prior knowl-
edge of the diffraction blur kernel, i.e., point spread function
(PSF) illustrated in Fig. 2(b), to guide the removal of diffrac-
tion (Feng et al. 2021; Kwon et al. 2021; Liu et al. 2022c).
Another part directly learns diffraction removal through
complex network design (Feng et al. 2023; Koh, Lee, and
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Yoon 2022; Liu et al. 2023a). Unfortunately, unlike UDC
images, diffraction will change dynamically with motion in
UDC video. Therefore, existing methods for images are un-
able to take advantage of the strong temporal coherence of
diffraction over time, leading to poor performance.

From a methodology perspective, unlike image restora-
tion which only learns on spatial dimensions, video restora-
tion pays more attention to exploiting temporal informa-
tion. Existing video restoration methods either align fea-
tures of adjacent frames (e.g., 5 or 7 frames) through a slid-
ing window input mechanism (Liang et al. 2022a), or learn
features from the more distant frame through a recurrent
mechanism (Liang et al. 2022b). Among them, benefiting
from the long-term modeling capability of recurrent mech-
anisms, significant progress has been made in video super-
resolution (Liu et al. 2022a), deblurring (Zhong et al. 2023),
and denoise (Tassano, Delon, and Veit 2020) tasks. For
UDC videos with complex degradations, the distant frames
have more content differences but help recover lost content
through the recurrent mechanism (Liu et al. 2022a; Chan
et al. 2022; Liu et al. 2023c) (i.e., eliminate flare). Exploiting
more similar scene patterns from adjacent frames in spatio-
temporal neighborhood is essential for recovering clear con-
tent (Wang et al. 2022; Lin et al. 2022; Zhang, Xie, and Yao
2022) (i.e., eliminate haze). Therefore, a more promising so-
lution is to explore proper network with long- and short-term
video representation learning to effectively and pertinently
eliminate various degradations in UDC video.

In this paper, we propose a novel UDC video restora-
tion network to enable effective video representation learn-
ing (D2RNet). The key idea of D2RNet is to decouple the
degradations in UDC videos while recovering them sepa-
rately with different features pertinently (as shown in Fig 1).
To achieve this, we propose a decoupling attention mod-
ule (DAM) in conjunction with a globally multi-scale bi-
directional recurrent framework. In particular, a soft mask
generation function is used to partition each frame into flare
and haze regions, which are produced by the diffraction of
strongly and weakly incident light, respectively. For the flare
region, a flare removal component learns long-term features
to recover the content loss. For the haze region, a haze re-
moval component learns short-term features to recover con-
tent fuzzy. DAM is extended to three scales to overcome the
scale-changing of degradation in long-range UDC videos.
Besides, for evaluation, we establish a large-scale UDC
video restoration benchmark, dubbed VidUDC33K. It con-
tains 677 paired videos of length 50 with 1080p resolution,
covering various challenging scenarios.

Our contributions are summarized as follows:

• We propose a novel network with long- and short-term
video representation learning by decoupling video degra-
dations for the UDC video restoration task (D2RNet),
which is the first work to address UDC video degrada-
tion. The core decoupling attention module (DAM) en-
ables a tailored solution to the degradation caused by dif-
ferent incident light intensities in the video.

• We propose a large-scale UDC video restoration dataset
(VidUDC33K), which includes numerous challenging

scenarios. To the best of our knowledge, this is the first
dataset for UDC video restoration.

• Extensive quantitative and qualitative evaluations
demonstrate the superiority of D2RNet. In the proposed
VidUDC33K dataset, D2RNet gains 1.02db PSNR
improvements more than other restoration methods.

Related Work
UDC Restoration. Recently, UDC restoration based on
deep learning has made significant progress and become
an increasingly promising research topic. Existing bench-
marks are mainly studies based on images. Typically,
MSUNet (Zhou et al. 2021) proposes a first UDC image
restoration benchmark by analyzing the optical imaging pro-
cess of real UDC for ECCV20 challenge (Zhou et al. 2020).
It includes diffraction kernels, i.e., point spread function
(PSF), and two paired datasets, i.e., transparent-organic LED
(T-OLED) and pentile-organic LED (P-OLED), by mount-
ing a display on top of a traditional digital camera lens. How-
ever, they are unaligned with the real UDC degradation due
to the lack of high dynamic range (HDR). Based on the mea-
sured PSF in real devices, DSICNet (Feng et al. 2021) gen-
erates a larger benchmark with the proposed model-based
data synthesis pipeline for ECCV22 challenge (Feng et al.
2022). In addition, since multiple artificial lights at night
may introduce different diffraction patterns, nighttime flare
removal (Dai et al. 2022) and haze removal (Liu et al. 2023d)
are also partially similar to the UDC restoration.

Existing works treat UDC image restoration as an inver-
sion problem for the measured PSFs (i.e., diffraction tem-
plates). To eliminate the degradation arising from the PSF,
some PSF-related methods (Kwon et al. 2021; Liu et al.
2022c) use the PSF as a priori to guide the diffraction re-
moval. Further, to avoid the PSF diversity caused by multiple
external factors, the PSF-free methods (Panikkasseril Sethu-
madhavan et al. 2020; Zhou et al. 2021) directly learn vari-
ous degradations in UDC images through complex network
design. Typically, MSUNet (Zhou et al. 2021), DAGF (Feng
et al. 2021), and BNUDC (Koh, Lee, and Yoon 2022) pro-
pose U-Net (Ronneberger, Fischer, and Brox 2015) frame-
work, deep atrous guided filter, and dual-stream frame-
work for UDC restoration, respectively. Recently, Align-
Former (Feng et al. 2023) proposes the first reference-based
framework for non-aligned UDC image restoration.

Video Restoration. Video restoration aims to recover a
high-quality video from a low-quality counterpart. Existing
video restoration methods can be categorized into two kinds
of paradigms: based on sliding-window structure (Kim et al.
2018; Li et al. 2021; Wang et al. 2019; Li et al. 2023) and
based on recurrent structure (Huang, Wang, and Wang 2017;
Isobe et al. 2020; Tao et al. 2018; Sajjadi, Vemulapalli, and
Brown 2018). The methods based on sliding-window struc-
ture use adjacent frames within a sliding window as inputs
to recover the high-quality frame (e.g., 5 or 7 frames). They
mainly use Transformer (Liang et al. 2022a) or deformable
convolutions (Wang et al. 2019) to design advanced align-
ment modules and fuse useful features from adjacent frames.
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Figure 2: (a) illustrates the formation of the PSF in UDC systems. The light emitted from the light source crosses a display and
a lens before it is finally captured by the sensor. (b) is the generation of UDC video, where the matching part computes the
Homography matrix (i.e., H) corresponding to inter-frame motion, and the transform part performs perspective warp on PSF.

Nevertheless, multi-frame inputs often require higher com-
putational costs, especially when using larger window sizes
to model frames at more distance. Rather than only aggre-
gating information from adjacent frames, methods based on
the recurrent structure can deliver the relevant features from
past frames over time. These methods either devote their at-
tention to designing advanced propagation methods for uti-
lizing frames at longer distances (Chan et al. 2022; Liu et al.
2022a), or exploit powerful attention mechanisms to en-
hance feature extraction in the recurrent framework (Liang
et al. 2022b; Zhong et al. 2023).

However, in contrast to degradation in super-resolution,
deblurring, and other low-level tasks, variations in the inten-
sity of incident light cause different degrees of degradation
in UDC video. We propose a more promising solution to
eliminate various degradations in UDC video restoration by
taking full advantage of the recurrent framework.

Problem Formulation and Dataset
Problem Formulation. Inspired by the real-world imag-
ing process of commercial UDC systems, we follow the ex-
isting UDC image restoration works (Koh, Lee, and Yoon
2022; Zhou et al. 2021) to define the UDC video restora-
tion as the diffraction removal problem. In UDC video, the
degradation model of the tth frame can be formulated as:

It = f(γ · IGT
t ∗ kt + n), (1)

where IGT
t and It denote the clean and degraded frame, re-

spectively. kt is the diffraction kernel (i.e., PSF), which is
the primary factor affecting the visual quality. γ and n are
the intensity scaling factor and additive noise, respectively.
∗ denotes the convolution operator. f(·) denotes the clamp
function used to simulate the channel saturation. Here we
omit the non-linear mapping for brevity.

From (Zhou et al. 2021), PSF is determined by the screen
pattern p(x, y) in the view of the light source. Different from
the image restoration that keeps the PSF constant, when the
light source changed during video shooting, PSF changes
accordingly (Kwon et al. 2021). As illustrated by Fig. 2(b),

we follow existing works (Babbar and Bajaj 2022; Ye et al.
2021; Liu et al. 2022b) to simulate the dynamic changes of
kt during the motion by computing the inter-frame Homog-
raphy matrix Ht−1→t, formulated as:

kt = T (kt−1, Ht−1→t)

=
∣∣F(H−1

t−1→t(F−1(sqrt(kt−1))))
∣∣2 ,

Ht−1→t = M(IGT
t−1, I

GT
t ),

(2)

where F(·) and F−1(·) are the Fourier transform and its
inverse transform, respectively. H−1

t−1→t is the inverse ma-
trix of Ht−1→t. T (·) is the transform function that uses the
H−1

t−1→t to perspective warp the PSF of the previous frame
kt−1. M(·) is the matching part used to compute the Ho-
mography matrix between frames.

Simulated Data. To keep the high dynamic range and
high resolution of UDC video, we collected a total of
677 HDR videos from YouTube covering various scenarios
present in HDRi Haven (e.g., Outdoor, Skies, Urban, Night,
Nature, and so on) and measured the PSF using a commer-
cial ZTE Axon 20 device. Each video consists of 50 frames
with a resolution of 1080× 1920. For each video, we simu-
lated the corresponding degraded video using Eq. (1), where
the PSF kt is dynamically changed by Eq. (2). To simu-
late the exhibit of structured flares near strong light sources,
brightness augmentation is also applied in each frame. Fi-
nally, 627 videos are selected for training, and the remaining
50 videos are for testing randomly.

Real Data. To verify the effectiveness of the D2RNet in
real world, we captured 10 raw videos of different scenarios
using the same ZTE Axon 20. We keep a high dynamic range
and the same resolution with the simulated data.

Methodology
Overview of D2RNet
By analyzing the properties of different degradations
(i.e., flare and haze) caused by variations in incident light
intensity, we introduce valuable insight into handling UDC
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Figure 3: Overview of D2RNet. It adopts a multi-scale bilateral recurrent architecture. Where an encoder and decoder are used
to extract frame features and reconstruct the output frame, respectively. The proposed decoupling attention modules (DAM, see
details in Fig. 4) is used to refine the features in both backward and forward propagation, which is supervised at multi-scale.

video restoration by decoupling the degradations. The over-
all structure of the proposed D2RNet is shown in Fig. 3.
Specifically, given a degraded low-quality sequence ILQ =
{It ∈ RC×H×W , t ∈ {1, 2, . . . , T}}, the goal is to recover
a high-quality version IHQ = {Ioutt ∈ RC×H×W , t ∈
{1, 2, . . . , T}}. Where T , C,H , and W are the sequence
length, channel, height, and width, respectively. The whole
model adopts the recurrent architecture that combines multi-
scale feature learning and bi-directional propagation. In
which, the core decoupling attention module (DAM) refines
features during backward and forward propagation.

Multi-scale Bi-directional Recurrent Architecture
Inspired by the success of bi-directional recurrent (Chan
et al. 2022; Huang, Wang, and Wang 2015) and multi-scale
fusion (Cho et al. 2021; Zamir et al. 2021) in low-level
tasks, we combine them to enhance video representations.
As shown in Fig. 3, from left to right, there is an encoder for
extracting multi-scale features, backward and forward prop-
agation for features learning, and a decoder for reconstruct-
ing the output frames, respectively.

Formally, take the restoration process of input It of the tth

frame as an example. First, during feature extraction, we use
the contracting path (up-to-down) of UNet (Ronneberger,
Fischer, and Brox 2015) as the structure of the encoder. This
structure tailored for image restoration is broadly considered
to enhance local details at different scales (Koh, Lee, and
Yoon 2022; Zamir et al. 2021). Specifically, we denote the
encoder as E(·), the output can be obtained by:

F s1
t , F s2

t , F s3
t = E(It), (3)

where F s1
t ∈ RCs1

× H
s1

×W
s1 , F s2

t ∈ RCs2×
H
s2

×W
s2 , and

F s3
t ∈ RCs3

× H
s3

×W
s3 indicate the obtained multi-scale fea-

tures. Cs1 , Cs2 , and Cs3 are the number of feature channels
at scales s1, s2, and s3, respectively, which increases pro-
gressively as the spatial resolution of the feature decreases.

Then, during bi-directional propagation, the proposed
DAM, denoted as DAM(·), refines the features recurrently
by inputting the current and the historical features. Take one
of the forward propagation as an example (omitting the scale
symbols for brevity). This process can be formulated as:

F out
t , F l

t = DAM(Ft, F
s
t−1, F

l
t−1), (4)

where F s
t−1 = Ft−1 denotes the short-term features from

the previous frame, and F l
t−1 indicates the long-term fea-

tures from the DAM output of the previous frame. Likewise,
DAM is also used for backward propagation and multi-scale.
Besides, to enable better learning of features, we multiplex
the features by taking the output of backward propagation as
the input of forward propagation.

Finally, we use the expanding path (down to up) of
UNet (Ronneberger, Fischer, and Brox 2015) as the structure
of the decoder, denoted as D(·). The features after propaga-
tion are used to reconstruct the output, formulated as:

Ioutt = D(F out,s1
t , F out,s2

t , F out,s3
t ), (5)

where Ioutt is the outut frame. The inputs F out,s1
t , F out,s2

t ,
and F out,s3

t indicate multi-scale features output from the bi-
directional recurrent propagation.

Decoupling Attention Module
Along with the diffraction changes with video motion, the
distant frame has some complementary features for recover-
ing the lost content due to the flare. Conversely, the removal
of haze in the current frame is less correlated with the con-
tent in the distant frames, and utilizing more similar features
in the spatio-temporal neighborhood is more cost-effective
for removing content haze. Therefore, we propose a tailored
decoupling attention module (DAM) in Fig. 4. It includes a
soft mask generation function to decouple the flare and haze,
and flare and haze removal components handle the respec-
tive degradations. We omit scale symbols for brevity.
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Figure 4: Structure of the Decoupling Attention Module
(DAM). From top to bottom, it mainly consists of a soft
mask generation function φ(·) for decoupling the flare
Mflare

t and haze Mhaze
t , and flare and haze removal com-

ponents handle the respective degradations using long- and
short-term features, respectively.

Formally, we first align the given long-term feature F l
t−1

and short-term feature F s
t−1 to the current frame with mo-

tion estimation network ϕ(·) and warping operation W(·),
formulated as:

F l
t−1→t = W(F l

t−1, Ot−1→t),

F s
t−1→t = W(F s

t−1, Ot−1→t),

Ot−1→t = ϕ(It−1, It),

(6)

where F l
t−1→t and F s

t−1→t are the output aligned fea-
tures. Ot−1→t represents the optical flow. Flares are usu-
ally caused by strong glare signals and occur with channel
saturation. Therefore, inspired by the separation of overex-
posed regions in HDR images (Cao et al. 2023; Eilertsen
et al. 2017; Liu et al. 2023b), an essential soft mask genera-
tion function φ(·) is proposed to generate the corresponding
map of flare Mflare

t and haze Mhaze
t , formulated as:

Mflare
t = φ(It), Mhaze

t = 1− φ(It),

φ(I
{r,g,b}
t ) =

max(0,maxc(I
r
t , I

g
t , I

b
t )− τ)

1− τ
,

(7)

where maxc(·) denotes taking the maximum value in the

channel dimension. τ is an empirical parameter used to par-
tition the flare and haze maps. Mflare

t measures the reliabil-
ity of the flare and locates the region where the flare occurs.
The value in Mflare

t is a linear ramp starting from pixel val-
ues at a threshold τ , and ending at the maximum pixel value.
Mhaze

t opposite to it.
Further, benefiting from the progress of the supervised at-

tention mechanism (Cho et al. 2021; Zamir et al. 2021) in
image restoration tasks, we generate intermediate results for
supervising the training in each stage. Specifically, with the
guidance of Mflare

t and Mhaze
t , the generated intermediate

result Îoutt can be formulated as:

Îoutt = It +△I lt +△Ist ,

△I lt = Conv(Mflare
t ⊗ F l

t−1→t),

△Ist = Conv(Mhaze
t ⊗ F s

t−1→t),

(8)

where Conv(·) denotes the convolutional layer. ⊗ de-
notes the element-wise multiplication. Compared to existing
restoration methods (Suin, Purohit, and Rajagopalan 2020;
Zhang et al. 2019) that directly predict images at each stage
and input them to subsequent stages, the introduction of su-
pervision between the intermediate results Îoutt and the cor-
responding ground truth in each stage contributes to feature
learning and performance gains.

Then, with the help of supervised Îoutt , we generate at-
tention maps that allow us to preserve the useful features to
refine the long-term features F l

t−1 and short-term features
F l
t−1, formulated as:

F̂ l
t = F l

t−1→t ⊕△F l
t , F̂ s

t = F s
t−1→t ⊕△F s

t ,

△F l
t = (S(Conv(Îoutt )))⊗ Conv(Mflare

t ⊗ F l
t−1→t),

△F s
t = (S(Conv(Îoutt )))⊗ Conv(Mhaze

t ⊗ F s
t−1→t),

(9)
where F̂ l

t and F̂ s
t are the output refined features. S(·) is a

sigmoid function for generating attention maps. ⊕ denotes
the element-wise addition.

Finally, the refined features F̂ l
t , F̂

s
t and the current fea-

tures Ft are concatenated to update the long-term features
while outputting features for reconstruction, formulated as:

F out
t = Conv(F l

t ),

F l
t = RBs(C(Ft, F̂

l
t , F̂

s
t )),

(10)

where F out
t is the output of DAM for the final reconstruc-

tion. F l
t is the updated long-term feature used for the next

frame inference. RBs(·) denotes the N stacked residual
blocks. C(·) is feature concatenation along the channel.

Experiments
Dataset and Metrics
Since no other datasets are available to study this problem,
we compare our D2RNet with other SOTA methods on the
proposed VidUDC33K dataset. We keep the same evalua-
tion metrics: 1) peak signal-to-noise ratio (PSNR), 2) struc-
tural similarity index (SSIM) (Wang et al. 2004) and 3)
learned perceptual image patch similarity (LPIPS) (Zhang
et al. 2018) as previous works (Liang et al. 2022a,b).
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Figure 5: Visual results on proposed VidUDC33K. The method is shown on the bottom. Zoom in to see better visualization.

Method RT(s) #P(M) PSNR↑ SSIM↑ LPIPS↓
DISCNet 0.73 3.80 28.89 0.8405 0.2432
BNUDC 0.09 4.60 28.59 0.8398 0.2728
UDC-UNet 0.37 5.70 28.37 0.8361 0.2561
Alignformer - - 28.96 0.8610 0.2200
EDVR 1.17 23.6 28.71 0.8531 0.2416
FastDVDnet 0.45 2.48 28.95 0.8638 0.2203
ESTRNN 0.20 2.47 29.54 0.8744 0.2170
VRT 2.18 17.5 30.61 0.9235 0.1397
RVRT 1.68 13.9 30.89 0.9261 0.1314
D2RNet 0.44 5.76 31.91 0.9313 0.1306

Table 1: Quantitative comparison (PSNR(dB)↑, SSIM↑, and
LPIPS↓) on the VidUDC33K dataset. RT and #P indicate the
runtimes and parameters, respectively.

Training Details
For fair comparisons, we follow existing works (Liang et al.
2022b) to use the pre-trained SPyNet (Ranjan and Black
2017) for motion estimation. In multi-scale architecture, s1,
s2, and s3 correspond to 2×, 4×, and 8× down-sampling,
where the channels of features are 48, 60, and 72, respec-
tively. In DAM, the threshold τ in the SMG is set to 0.9,
and the number of ResBlocks N is set to 5. During training,
we use Cosine Annealing scheme and Adam optimizer with
β1 = 0.9 and β2 = 0.99. The learning rates of the motion es-
timation and other parts are set as 1.25×10−5 and 1×10−4,
respectively. We set the batch size as 8 and the input patch
size as 256 × 256. To keep fair comparisons, we augment
the data with random horizontal flips, vertical flips, and 90◦

rotations. Besides, to enable long-range sequence capability,
we use sequences with a length of 30 as inputs. The Char-
bonnier penalty loss, defined as L(x, y) =

√
∥x− y∥2 + ε2

where ϵ = 10−3, is applied not only to the whole frames be-
tween the restored frame Iout and ground truth, but also to
the whole frames between the intermediate result Îout and
the ground truth. To stabilize the training, we fix the mo-
tion estimation network in the first 5K iterations, and make
it trainable later. The total number of iterations is 400K.

Comparisons with State-of-the-art Methods
We compare our D2RNet with four UDC image restoration
models (Feng et al. 2021; Koh, Lee, and Yoon 2022; Feng

Base IS SHR LFR SMG PSNR SSIM LPIPS
✓ 30.49 0.9220 0.1394
✓ ✓ 31.01 0.9277 0.1352
✓ ✓ ✓ 31.25 0.9301 0.1344
✓ ✓ ✓ 31.37 0.9308 0.1340
✓ ✓ ✓ ✓ 31.74 0.9312 0.1314
✓ ✓ ✓ ✓ ✓ 31.91 0.9313 0.1306

Table 2: Ablation study of each components on the proposed
VidUDC33K dataset.

et al. 2023; Liu et al. 2022c) and five video restoration mod-
els (Liang et al. 2022a,b; Tassano, Delon, and Veit 2020;
Wang et al. 2019; Zhong et al. 2023). For fair comparisons,
we reproduce results with recommended configurations by
the authors’ officially released codes.

Quantitative comparison. The performance comparisons
on our proposed VidUDC33K dataset are shown in Tab. 1.
The image-based UDC restoration method (e.g., Align-
former (Feng et al. 2023)) cannot exploit temporal infor-
mation, resulting in poor performance, despite having fewer
parameters and runtimes. Methods dedicated to video de-
noise (i.e., FastDVDnet (Tassano, Delon, and Veit 2020))
and video blurring (i.e., ESTRNN (Zhong et al. 2023)) do
not yield the ideal performance due to the lack of design to
handle diffraction. Moreover, compared to the latest video
restoration algorithm (e.g., RVRT (Liang et al. 2022b)),
which treat all degradations as equivalent, our method out-
performs the latest methods in both objective evaluation
metrics PSNR, SSIM and perceptual metrics LPIPS with
less runtime and parameters. In particular, our method ex-
ceeds the RVRT (Liang et al. 2022b) by 1.02 dB in PSNR,
benefiting from our multi-scale bi-directional recurrent ar-
chitecture and the design of the decoupled degradation. This
large margin demonstrates the power of D2RNet.

Qualitative comparison. To further compare the visual
qualities of different algorithms, we show visual results re-
stored by our D2RNet and other SOTA methods in Fig. 5. It
can be observed that compared to other algorithms, D2RNet
can simultaneously remove flare at brighter windows and
haze elsewhere. It verify that D2RNet has a stronger UDC



Input Frame Base+IS Base+IS+SHR

Base+IS+LFR Base+DAM Ground TruthBase+IS+LFR Base+DAM Ground Truth

Figure 6: Visual comparison of different components used.

τ 0.98 0.95 0.90 0.85
PSNR 31.30 31.74 31.91 31.78
SSIM 0.9299 0.9310 0.9313 0.9310

Table 3: Ablation of τ in soft mask generation function.

video restoration capability and has a great improvement in
visual quality, especially for flare-rich videos.

Ablation Study
In this section, we first conduct ablation for each component
in DAM. After that, we study the effect of the τ in the SMG
and the effect of the multi-scale architecture.

Individual components. Based on our proposed model,
we directly use ResBlock (He et al. 2016) to replace the de-
coupling attention module as the “Base” model and progres-
sively add the intermediate supervision (IS), the short-term
haze removal component (SHR), the long-term flare removal
component (LFR), and the soft mask generation function
(SMG) for comparisons. As shown in Tab. 2, the PSNR can
be improved from 30.49 dB to 31.74 dB with the addition
of IS, SHR, and LFR, verifying the powerful ability of the
supervised attention mechanism and the haze/flare removal
component. When SMG is involved, degraded haze and flare
are decoupled and learned separately, and the performance
is improved to 31.91 dB. These demonstrate the superiority
of each part in DAM. We further explore the visual differ-
ences as shown in Fig. 6. LFR can eliminate the content loss
caused by flare, and SHR can eliminate the content fuzziness
caused by haze. Decoupling flare and haze in UDC videos
to remove them separately can produce clearer textures.

The effect of τ . To explore the effect of τ used in the soft
mask generation function on performance. In Tab. 3, we use
different τ to decouple the flare and haze. It can be seen that
too large τ does not completely separate the flare region,
which affects the recovery of the lost content. On the con-
trary, too small τ will result in incomplete removal of con-
tent fuzziness. It demonstrates the effectiveness of the soft
mask generation function in decoupling video degradation.
We set τ as 0.9 in the final model.

The effect of the multi-scale architecture. To alleviate
the scale-changing problem in sequences, we discuss the ef-
fect of multi-scale architecture on performance. In Tab. 4,

Input Frame DISCNet EDVR FastDVDnet

VRT ESTRNN RVRT D
2
RNet(Ours)

Input Frame DISCNet EDVR FastDVDnet

VRT ESTRNN RVRT D
2
RNet(Ours)

Figure 7: Visual comparison of real UDC video.

Scale (2×) (2×,4×) (2×,4×,8×)
PSNR 30.45 31.36 31.91
SSIM 0.9192 0.9308 0.9313

Table 4: Ablation of the multi-scale structure.

we use 2×, 4×, and 8× to denote s1, s2, and s3 as described
in Sec. , respectively. The results show that our method
can restore clearer content as the scale increases. The per-
formance can improve PSNR from 30.45 dB to 31.91 dB,
indicating that multi-scale architecture can adapt to scale-
changing problems in sequences. In our model, we use all
three scales to achieve the best performance.

Evaluation on Real UDC Video
In addition to the simulated dataset described above, we con-
duct compare on real videos collected by the same device.
As shown in Fig. 7, for diffraction-induced flare and haze,
our D2RNet can produce clearer textures. This demonstrates
the robustness of our D2RNet.

Conclusion
In this paper, we study the effects of the intensity of the inci-
dent light and the motion information in UDC video degra-
dation, and introduce a new perspective to handle them by
decoupling different types of degradation in advance. In par-
ticular, we propose a novel video restoration network to en-
able effective UDC video representation learning, dubbed
D2RNet, in which the core decoupling attention module
(DAM) provides an effective and targeted solution for elim-
inating various degradations. Experimental results show sig-
nificant performance improvements and clear visual margins
between D2RNet and existing SOTA models. To the best of
our knowledge, we are the first work to study this problem
and propose the first large-scale UDC video benchmark. Our
perspective on UDC video has the potential to inspire more
diffraction-limited video restoration works. In the future, we
will further improve the generality and robustness of our
model, and extend it to other low-level vision tasks through
more exploration.
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